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We study a simple DNA helix model, consisting of two infinite chains of evenly spaced charges to represent
the phosphate groups, wound in a helix which lies on an imaginary cylindrical surface. The change in the free
energy per helix charge between coiled and uncoiled conformations of the helix in solution is studied as a
function of the charge per unit length along the helix axis. This allows us to study the effects of the solution
on the helix stability and coiling. The change in the free energy is calculated from Soumpasis’s pair potential
of mean force, applied to all pairs of helix charges@D. M. Soumpasis, Proc. Natl. Acad. Sci. U.S.A.81, 5116
~1984!#. The local counterion concentration is calculated from the counterion radial distribution that results
from solving the Poisson-Boltzmann equation for an infinite uniformly charged cylinder@R. M. Fuoss, A.
Katchalsky, and S. Lifson, Proc. Natl. Acad. Sci.37, 579 ~1951!#, whose linear charge density is equal to the
charge per unit length along the helix axis. Our results show that the helix is less stable on decreasing bulk
dielectric constant and more stable on increasing counterion radius. Experimental data are discussed on DNA
in solutions with water, ethanol, and methanol as the solvent.

PACS number~s!: 87.15.2v

I. INTRODUCTION

In aqueous solution at neutralpH and room temperature,
deoxyribonucleic acid~DNA! @1# is a polyion, whose total
charge is compensated by small mobilecounterions. In a
simple way, a DNA strand can be thought of as a macromo-
lecular chain formed from nucleotides. A nucleotide is
formed from a sugar~furanose! ring to which a planar mol-
ecule, or base (A, G, T, or C), and a charged phosphate
group are attached. In our paper, we assume that the only
charges on the DNA polyion are at the centers of the phos-
phate groups.

DNA helices show structural variety@1–3#, which de-
pends on environmental factors, such as counterion, solvent,
and temperature, as well as retained salt and relative humid-
ity in crystallographic samples. An ideal infinite helix is left
invariant under a combination of atranslationalong the he-
lix axis and arotation about the helix axis, which is the
space group of the helix. From measurements on right-
handed double helices, it is well known that axial transla-
tions and rotations per nucleotide range from 2.56 to 3.41 Å
and from 45° to 30°, respectively.

The phosphate group positions are important in our cal-
culations. Soumpasis@4# and his group@5# have developed a
method to calculate the effects of the solution on the relative
stability between two polyion conformations, and their re-
sults have been confirmed experimentally. In Soumpasis’s
method, which is used in our paper and reviewed in Sec. II,
the change in the free energy between two polyion confor-
mations is calculated using statistically averaged interac-
tions, or potentials of mean force~PMF’s!. Interactions be-
tween charged phosphate groups in the solution are
calculated from the pair PMF, which includes the effects of

the salt, such as charge screening and hard-core correlations
due to the finite size of the ions. In the treatment of Refs.@4#
and@5#, the solution is allowed to flow freely into the interior
of the DNA molecule~i.e., into the region enclosed by the
double helix of phosphate group charges!. In contrast, in our
treatment, we do not allow the solution to penetrate into this
region.

A DNA double helix can be treated as a straight cylinder
over a distance of many base pairs, because of steric con-
straints and electrostatic forces of short range~base stacking
interactions!, which act perpendicularly to the base planes
@1#. On the basis of crystallographic atomic coordinates
@6–8# of various DNA right-handed helices, which display
different axial translations and rotations per nucleotide, the
radial distance of the phosphate groups to the axis is not seen
to vary substantially. Section III presents a double helix
model, formed from two chains of charges, in which the
axial translation and rotation per helix charge vary to de-
scribe coiling or winding, while the radial distance from a
charge to the axis and the distance between two consecutive
charges on the same chain are kept fixed during the process
of coiling.

Our investigation was motivated by a desire to understand
the dissociation of a double stranded DNA into single
strands. It is experimentally known that a DNA double helix
in aqueous solution is unstable at very low salt concentra-
tions @9–12#, i.e., natural DNA in a concentration of less
than 1024M at room temperature@12#. Moreover, at moder-
ate concentrations (;0.1M ), DNA is unstable at high tem-
peratures (;85 °C!. As recognized, the process of dissocia-
tion of the two strands, called denaturation, involves two
steps@1,13#: the uncoiling of the helix and the separation of
the strands in which a complete breaking of the hydrogen
bonds takes place. In our paper, we only treat the coiling-
uncoiling of the double helix~the secondary structure! and
the associated change in the free energy.

We describe the DNA double helix and the solution as
two interdependent systems. The solution, determined by the
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solvent, concentration, and type of counterion, has been con-
sidered to play an important role in DNA stability and con-
formation @1,9#. At high dilution, the molecule unwinds and
elongates@14# before the separation of the strands takes
place. Experiments have shown that the temperature of dis-
sociation increases with increasing salt concentration@1# and
this stabilizing factor of salt was attributed to the screening
of the electrostatic repulsion between charged groups on ei-
ther strand@15,16#.

The theory of polyelectrolytes~charged polyions in solu-
tion! @17,18# is found in early theoretical studies of DNA
denaturation@15,16,19#. In these studies, effects of the ionic
concentration on the DNA melting temperature, the counter-
ion distribution, and the counterion binding, were addressed
by solving the Poisson-Boltzmann~PB! equation. During the
last two decades, there has been a substantial development in
the statistical theory of ionic solutions, and because of this
development highly concentrated ionic solutions (.2M )
can be more satisfactorily described@4,20#.

In our treatment, the double helix charges are positioned
on an imaginary cylindrical surface for reasons that were
discussed earlier. The counterion distribution is calculated as
if the charge on the double helix were uniformly distributed
on a cylinder. In the early 1950s, an analytical integration of
the PB equation for a uniformly charged infinite cylinder
model was introduced@21,22# ~the charge in solution is only
due to the counterions in these treatments!. As shown in
these early studies, the cylinderlinear charge densityis an
important parameter for determining the counterion distribu-
tion. In Sec. IV, to determine the local concentration of
counterions at the cylinder surface, the counterion distribu-
tion around a charged cylinder is calculated from the PB
equation of Ref.@21#. The linear charge density of the cyl-
inder is equal to the charge per unit length along the axis of
the double helix, which depends on the extent of coiling. Use
of the PB equation is supported as a first approximation by
Monte Carlo simulations on the ionic distribution surround-
ing a uniformly charged cylinder@23# without co-ions~ions
with a charge of the same sign as the DNA polyion! and with
counterions of small radii, compared to the DNA radius. In
addition, there are Monte Carlo simulations using a more
detailed molecular structure of the DNA polyion, based on
experimental coordinates@24#, which investigate the dielec-
tric saturation of water near DNA. The radial counterion dis-
tribution that results from these simulations shows that the
PB equation, which underestimates the counterion concentra-
tion near the DNA polyion by 18%, is qualitatively correct.
We use the PB equation as a first approximation to determine
the counterion concentration near the DNA polyion, which is
best treated by introducing a dielectric constant smaller than
the bulk value for the solvent close to the polyion. The avail-
able information on the value of the dielectric constant for
the solvent at close distances in unclear@24#; however, our
calculations involve other parameters that are well deter-
mined by experiments.

Manning elaborated on the notion of counterion binding
in his theory of counterion condensation, which in its origi-
nal form@25,26# is based on modeling a polyion as a uniform
distribution of charge on a line of infinite length in a dilute
salt solution. According to Manning, the counterions, treated
as point charges, will condense on a polyion with a linear

charge density higher than a critical value; consequently, the
polyion is partially neutralized. Studies that describe coun-
terion condensation based on the PB equation for a charged
cylinder have been published as well@27–29#. In contrast to
the treatment given in Refs.@26# and @27#, our treatment
models the DNA molecule as a double helix of charge. We
calculate the free energy difference between this double helix
and the same charges with the double helix unwound, using
the approximate treatment inherent in the potential of mean
force ~mainly the Kirkwood approximation!. More recently,
it was found that condensation of counterions is increased if
the dielectric constant for the solvent near the DNA polyion
is lower than the bulk value@24,30#. Furthermore, this is
consistent with measurements on highly concentrated ionic
solutions @31–33# showing that the dielectric constant is
lower than the value of the pure solvent. Because of the
above, in solving the PB equation in Sec. IV, we have as-
sumed the dielectric constant has two values, one at large
distances from the cylinder equal to the value for a bulk
solvent and a smaller value close to the cylinder surface.

In Sec. II we describe Soumpasis’s method to calculate
the effects of the solution on the change in the free energy
between two polyion conformations. In Sec. III, the helix
model polyion and its parameters are introduced. In Sec. IV,
to determine the local concentration at the cylinder surface
we calculate the counterion distribution by the PB equation
for an infinite uniformly charged cylinder. Section V is a
discussion of the results.

II. THE POTENTIAL OF MEAN FORCE

We summarize some important points about Soumpasis’s
method@4# to calculate the effects of the solution on a poly-
ion conformation, which is given by the positions of the
charges on the polyion~for DNA, the positions of the phos-
phate groups!. In the absence of counterion binding, the so-
lution ions are considered to form a diffuse cloud. The sol-
vent, considered as a continuous medium, is modeled by a
dielectric constant. As in the Debye-Hu¨ckel ~DH! theory of
electrolytes, the solution degrees of freedom~ionic cloud and
solvent! are considered statistically averaged, while the co-
ordinates of the polyion charges remain as parameters of the
free energy@34#, or the potential of mean force. By this
procedure, fast and slow processes are distinguished. Soum-
pasis@4# and his group@5# calculated the change in the free
energy between two DNA conformations in solution, using
approximations to the PMF, suggested by statistical me-
chanical theories@4,20#.

For a given polyion conformationX determined by the
positions of the polyion charges, two contributions to the
free energyF(X) are distinguished;

F~X!5F0~X!1F1~X!, ~2.1!

whereF1(X) includes the statistically averaged interactions
of the polyion charges in the solution, andF0(X) includes all
other interactions, such as hydrophobic interactions, DNA
chemical bonds, dispersion forces, and base stacking, which
are assumed to be independent of the solution up to a first
approximation. For a second conformationY, there is a simi-
lar form for the free energy:
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F~Y!5F0~Y!1F1~Y!. ~2.2!

As assumed,F0(Y) is not significantly different from
F0(X) after changes in the solution, such as a change in the
counterion distribution; hence, the change in the free energy
between conformationX and conformationY can be ob-
tained by subtracting Eq.~2.1! form Eq. ~2.2!, giving

DF~Y,X![F~Y!2F~X!5F1~Y!2F1~X!. ~2.3!

A further approximation is introduced in calculating
F1(X) and F1(Y) by adding allpair interactions between
charged phosphate groups. The pair PMF is used to calculate
interactions between pairs of phosphate groups. In Soumpa-
sis’s study@4#, the ionic solution is formed by the polyion
phosphate groups, which are treated as ions, and the sur-
rounding ions~or counterions!.

An ionic solution can be thought of as a gas of charged
hard spheres in a continuous medium, the solvent. In the
simplest case, the solution is formed by ions of two kinds,
q1 and q2 , where q152ueu and q25ueu
(ueu54.8032310210 esu!. Let n1 andn2 denote the number
of ions per unit volume for each kind of ion. The free energy
of two q1 ions, considered fixed at a distancer , is the pair
PMF used in the calculation; all other ions and the solvent
are statistically averaged. At low concentrations, the PMF is
a DH screened Coulomb interaction. At high concentrations,
hard-sphere~HS! correlations become important. In our cal-
culations we use an analytical expression of the pair PMF
suggested by Olivares and McQuarrie@20# and used by
Soumpasis@4#, which shows these features:

w~r !5wHS~r ;$ni%,s,T!1wDH~r ;$qi%,$ni%,s,T!,
~2.4a!

where$qi% and $ni% denote the charges and the number of
ions per unit volume, for each ion typei , respectively@for
simplicity, r is assumed to be the only explicit parameter in
w(r )#. In the last equation, the first term is

wHS~r ;$ni%,s,T!52kBT lng~r ;$ni%,s!, ~2.4b!

whereg(r ;$ni%,s) is the pair correlation function of a hard-
core potential, which depends on the concentration of hard
spheres and the minimum distance of approach,s ~between
a chargeq1 and a counterionq2). The second term is

wDH~r ;$qi%,$ni%,s,T!5
q1
2

ẽ~11ks!

exp@2k~r2s!#

r
,

~2.4c!

whereẽ is the dielectric constant for the solvent and

k5S 4p(
i
niqi

2

ẽkBT
D 1/2

~2.4d!

is the inverse DH screening length, which characterizes the
range of the electrostatic interaction.

Throop and Bearman@35# have evaluated the solution to
the Percus-Yevick equation numerically and tabulated the
radial distribution function for the hard-sphere potential. The

analytical expression for this function is given in Refs.@35#
and @36#. A computer program, provided in Appendix D of
Ref. @37#, evaluates the Percus-Yevick correlation function
with a modification@38# in agreement with Monte Carlo data
for hard spheres. The PMF obtained from Eq.~2.4a!, using in
Eq. ~2.4b! the Percus-Yevick correlation function, is dis-
played in Fig. 1; the energy of interaction of two charges,
q1 , is plotted as a function of the separationr . In the ex-
ample, we have considered a case whereq152ueu,
q25ueu, and n15n2; the molar salt concentration (M ) is
calculated from

c15
n1

6.02231024 , ~2.5!

where 2n1 is the number of hard spheres per Å3. If the salt
concentration is high enough, the Coulomb repulsion is
screened, and Eq.~2.4b! becomes important, showing the
effects of the ion hard core.

III. HELIX AND UNCOILING TRANSITION

In Table I we show a list of conformation parameters of
various types of DNA. The x-ray crystallographic data on the
phosphate group atomic coordinates were obtained from sev-
eral references@6–8#. The right-handed helix model that is
presented in this section is based on these measurements.

The double helix model is made from two interwound
infinite linear chains of evenly spaced unit charges, due to
the phosphate groups, on an imaginary cylindrical surface
with a radius denoted bya08 . Even though the four cases
presented in Table I correspond to various conditions of rela-

FIG. 1. The potential of mean force~PMF!, from Eq.~2.4a!, of
two unit charge ions of equal sign in an ionic solution. Ions of two
types form the solution, q152ueu and q25ueu, where
ueu54.8032310210 esu. Ions of each type are in equal concentra-
tions, n15n2 ~the number of hard spheres per unit volume is
2n1). The molar salt concentration (M ), c1 from Eq. ~2.5!, for the
examples is 0.4M ~dotted line!, 2.0M ~dot-dashed line!, and 4.0M
~solid line!. At high concentrations, there is a high Coulomb screen-
ing, and hard-core correlations are important, which is shown by the
nonmonotonic solid line. Other parameters areẽ578.85,
T525 °C, ands55 Å.
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tive humidity, retained salt, and counterion type, the radius
a08 is not substantially changed inA-DNA, B-DNA, and
C-DNA. In D-DNA, which is considerably coiled compared
to B-DNA andC-DNA, a08 changes by about 1 Å. Since our
assumption thata08 does not vary significantly among several
different forms of DNA does not hold forZ-DNA, our
method is not valid for treating it.

The distance between two consecutive charges on the
same chain is denoted bydpp and it is measured from one
charge to the other in a straight line. As mentioned in the
Introduction, the sugar ring conformation determines the dis-
tance between consecutive phosphate groups in a DNA
strand backbone; this distance corresponds todpp . The dif-
ference indpp between theA-genus DNA and theB-genus
DNA is about 1 Å (A-DNA belongs to theA genus;
B-DNA, C-DNA, andD-DNA belong to theB genus!.

For clarity, thez axis of a cylindrical system of coordi-
nates is used as the axis of the helix. Double stranded DNA
can be thought of as formed by repeating the nucleotide pair,
bound by two complementary bases. The positions of a pair
of charges associated with a nucleotide pair can be used to
generate the positions of the consecutive pairs of charges by
a rotation about the axis,cY , and a translation along the
axis, h(cY). The double helix is constructed by repeated
application of the combined translation and rotation upon the
coordinates of the first pair of charges. The translation along
the z axis is

h~cY!5A~dpp!
22~2a08sin@cY/2# !2 for 0<cY,180°,

~3.1!

where the angle of rotationcY is measured on a plane per-
pendicular to the axis, as an azimuthal angle, and
(dpp)

22(2a08sin@cY/2#)2>0.
The distance between a pair of charges that correspond to

the phosphate groups in a pair of complementary nucleotides
is denoted byd̄pp , measured from one charge to the other in
a straight line. In theB-DNA conformation@1# the base pair
lies nearly in a plane, with one phosphate group above and
the other below the base pair plane. As seen in Table I, the
distancesd̄pp of the four types of DNA are close in value,
within approximately 2 Å. This distance is possibly due to
the hydrogen bonding, which has a certain equilibrium
length, the base pair, and the stacking interactions that re-
strict the base pair to be nearly on a plane~this plane is not
necessarily perpendicular to the axis!. The change in the azi-
muthal angle between the two charge positions of this pair of
charges is denoted byc̄0 . In this section, the quantities that
depend on the relative position between the two helices are

denoted with a bar over them. The projection along thez axis
of the distance between the pair of charges is

h 0̄5A~ d̄pp!
22~2a08sin@c̄0/2# !2 for 0,c̄0<180°,

~3.2!

TABLE I. DNA double helix parameters which are obtained from experimental measurements. Refer-
ences are listed in this table. The definitions of the parameters are given in Sec. III of text.

DNA a08 ~Å! d̄ pp ~Å! c̄0 ~deg! h̄0 ~Å! dpp ~Å! cY ~deg! h(cY) ~Å! Ref.

A 8.92 18.549 138.4 8.12 5.637 32.7 2.56 @6#

B 8.91 18.228 169.6 4.16 6.461 36.0 3.38 @6#

C 9.05 16.903 137.8 0.74 6.842 38.6 3.32 @7#

D 7.86 16.227 176.8 4.05 6.736 45.0 3.03 @8#

FIG. 2. ~a! Two infinite chains of charges in a right-handed
double helix wound on an axis along thez direction. Each pair of
charges, which correspond to the phosphate groups on two comple-
mentary nucleotides, is numbered by a consecutive integerm.
Charges on one chain are shown by solid lines, and charges on the
other chain are shown by dashed lines; only the charges in the pairs
m50 andm51 are displayed. The length parametersa08 , h̄0 ,
dpp , and d̄pp and h(cY), described in Sec. III of the text, are
shown.~b! Projection on thex-y plane of the charges shown in~a!.
Each pair of charges, which correspond to the phosphate groups on
two complementary nucleotides, is numbered by a consecutive in-
tegerm. Charges on one chain are depicted in solid lines, and
charges on the other chain are in dashed lines; only four charges
~the pairs,m50 andm51) are displayed. The helix axis is along
the z direction. The anglesc̄0 andcY , described in Sec. III of the
text, are shown.
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where (d̄pp)
22(2a08sin@c̄0/2#)2>0 andc̄0 is chosen within

0,c̄0<180°. ~The formula is not changed if instead ofc̄0

the complementary angle 360°2c̄0 is used.!
In Figs. 2~a! and 2~b!, the helix model is illustrated, with

only two pairs of charges shown for simplicity. For clarity
and notation, an integerm is assigned to each pair of charges
associated with a complementary nucleotide pair, consider-
ing each pair of charges labeled in this way as one unit. We
choosem to increase along the positivez axis and two con-
secutive integers are associated with two consecutive pairs of
charges.

From given values of the parametersa08 , dpp , c̄0 , and

d̄ pp, and the anglecY , the positions of all helix charges can
be determined with respect to a charge, used as a reference
point, in the pair of charges designated bym50. Distances
from charges on the same chain as the reference charge are

d0,m~cY!5A@mh~cY!#21@2a08sin~mcY/2!#2. ~3.3!

Distances from charges on the opposite chain to the refer-
ence charge are

d̄0,m~cY!5A@mh~cY!2h̄0#
21$2a08sin@~mcY2c̄0!/2#%2,

~3.4!

wherem561,62,63, . . . , andh(cY), andh0 are given in
Eqs. ~3.1! and ~3.2!, respectively. For consistency of Eqs.
~3.1! and ~3.3!, d0,1(cY)[dpp; also of Eqs.~3.2! and ~3.4!,
d̄0,0(cY)[d̄pp. Figure 3 highlights the distances from the

reference charge, in the pairm50, to near charges from
above and below, calculated from Eqs.~3.3! and ~3.4!.
~Coiled and uncoiled conformations for the double helix are
presented. The uncoiled conformation represents the charges
along two parallel lines.!

The following points are made to complete the discussion
on Table I.B-DNA samples are generally obtained at ap-
proximately 92% of relative humidity with Na1 as the coun-
terion.A-DNA, C-DNA, andD-DNA samples are obtained
at approximately 75% of relative humidity or even less.
C-DNA is generally prepared in Li1 salt, as seen in Table
9.1 of Ref.@1#. D-DNA is obtained under the minimum bulk
salt concentration@8# which would normally give the
A-DNA; however, the ionic concentration near aD-DNA
molecule is not necessarily small enough to compensate for
the higher charge per unit length, which is proportional to
1/h(cY). Reference@39# is an interesting early study on the
atomic coordinates of DNA.

To describe coiling-uncoiling of the helix, we consider
two conformations: the first,X, in which the helix is com-
pletely uncoiled,cY50, andh(0)5dpp ~i.e., two chains of
charges parallel at a distance 2a08sin@c̄0/2#); the second con-
formation, Y, in which the helix is coiled with an angle
cY , andh(cY),dpp , from Eq.~3.1!. In considering the two
conformations, the parametersa08 , dpp , d̄pp , and c̄0 , are
kept constant. The charge per unit length along the axis of
the double helix, which is proportional to 1/h(cY), is an
important parameter for determining the concentration of
counterions near the polyion, using the PMF of Eq.~2.4a! of
Sec. II. The concentration of counterions near the polyion is
calculated in Sec. IV.

In the final paragraphs, we give the formula for the
change in the free energy between the two conformations;
this discussion is based on the discussion presented in Sec.
II. The change in the free energy between the two conforma-
tions,DF(Y,X) in Eq. ~2.3!, is calculated from the statisti-
cally averaged interactions ofall phosphate groups in solu-
tion. The change in the free energyper helix charge,
DW(Y,X), can be obtained by adding all pair interactions
betweenonecharge and all other charges on the double he-
lix. To calculate the pair interactions we use the PMFw(r )
defined in Eq.~2.4a!. The distances between a particular
charge and all other charges on the same strand,d0,m(cY), or
on the opposite strand,d̄0,m(cY), are obtained from Eqs.
~3.3! and ~3.4!, respectively. Therefore the change in free
energy per helix charge between the two conformations is

DW~Y,X![ (
m52`

m5`

dWm , ~3.5a!

where

dWm5Wm~Y!2Wm~X!, ~3.5b!

and

Wm~Y!5$w@d0,m~cY!#1w@ d̄0,m~cY!#%cYÞ0 , ~3.5c!

Wm~X!5$w@d0,m~cY!#1w@ d̄0,m~cY!#%cY50 , ~3.5d!

FIG. 3. The distances from a reference charge~in the pair de-
noted bym50) to the other charges in the double helix model. The
values of the parameters for the helix are taken from theB model of
Table II. The coiled and uncoiled conformations are shown. For the
coiled helix,cY536.6° is assumed; for the uncoiled helix,cY50.
For d0,m(cY) of Eq. ~3.3!, the solid line and dotted line represent
coiled and uncoiled conformations, respectively. Ford̄0,m(cY) of
Eq. ~3.4!, the dashed line and dot-dashed line represent coiled and
uncoiled conformations, respectively. The lines are drawn to high-
light the points calculated from the above equations. It is seen that
the curves for the charges on the same chain as the reference charge
are symmetrical with respect to a plane crossingm50 ~solid and
dotted lines!.
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where the integerm labels the charge pairs corresponding to
complementary nucleotides.

In Sec. IV we calculate the counterion distribution around
the double helix by solving the PB equation of a uniformly
charged infinite cylinder. Once the counterion distribution is
obtained, the salt concentrationn at the cylinder surface can
be obtained. This calculation is shown in Eq.~4.13! of the
following section. The charge per unit length along the
double helix axis is calculated from

l5
2q8

h~cY!
, ~3.6!

whereh(cY) is given by Eq.~3.1! andq8 is a charge on the
double helix, the phosphate group charge.

The equilibrium conformation of the helix is found by
minimizing the change in the free energy, Eq.~3.5a!, as a
function of the charge per unit length along the axis given in
Eq. ~3.6!.

IV. DISTRIBUTION OF COUNTERIONS IN SOLUTION

In Sec. III, the helix charges were positioned on an imagi-
nary cylindrical surface of radiusa08 . In this section, the
counterion distribution around the double helix is calculated
as if the double helix were a uniformly charged cylinder of
infinite length. The linear charge density of the cylinder is
determined by Eq.~3.6!. The calculations are based on solv-
ing the Poisson-Boltzmann equation for an impenetrable uni-
formly charged cylinder of radiusa0 , in which a05a081s,
wheres is the minimum distance of approach of a counter-
ion to the center of a charge on the polyion. Results in this
section are based on an analytical solution of the PB equa-
tion @21# of an infinite charged cylinder with counterions.

Studies of DNA based on an infinite rigid cylinder model
can be found@19#. This model assumes that the cylinder is
the equilibrium conformation, ignoring the fluctuations
around this conformation and bending. In addition, the infi-
nite model might not be appropriate to describe DNA in
solution; for example, when the solution is very dilute~i.e.,
the screening length is larger than the characteristic length
scales associated with a DNA molecule, e.g., the radius of
the molecule, the total length, or the radius of curvature!.
The cylinder represents a negatively charged polyion, on ac-
count of the phosphate group charges. The counterions are
assumed to form a diffuse cloud.

The PB equation significantly simplifies the equilibrium
analysis of the small ions in solution. The continuous model
has been chosen to simplify the calculations; however, it is
only appropriate as long as the discrete nature of the charges
can be neglected. The use of the PB equation as a first ap-
proximation is supported by Monte Carlo simulations on a
cylinder model@23# in which none or few co-ions are present
and the counterions hard core is small compared to the DNA
radius, i.e.,s/a08;0.1. In addition, Monte Carlo simulations
were performed to investigate the effects of dielectric satu-
ration of water near DNA, using a more detailed molecular
structure of the polyion, a structure based on experimental
coordinates@24#. The PB equation does not include the ion-
ion correlations due to the finite size of the ions, as opposed
to the simulations in which these correlations are considered.

The results of the simulations show that the radial counterion
distribution obtained by the PB equation is in qualitative
agreement with the simulations. If a smaller value of the
dielectric constant for the solvent close the polyion is intro-
duced in the PB equation, a better agreement can be obtained
~using the bulk dielectric constant of water in the PB equa-
tion, counterion concentration at close distances is underes-
timated by approximately 18%@24# with respect to the re-
sults of the simulations!. In our paper, the value of this
dielectric constant is consistent with measurements per-
formed in highly concentrated ionic solutions@32,33# and
our calculations give reasonable values of other experimental
parameters that are well known.

As shown in other studies@27–29#, counterions can be
described by the PB equation. The counterion distribution
from the PB equation gives a high counterion concentration
near the cylinder surface, a fact consistent with Manning’s
theory of counterion condensation@25,26#. Some authors
have shown that a lower dielectric constant for the solvent
near the DNA polyion enhances the counterion condensation
@24,30#. A lower dielectric constant near the DNA polyion is
consistent with the fact that in highly concentrated ionic so-
lutions the dielectric constant of water is lower than for pure
water @31–33#. Hence, in solving the PB equation, we have
used two dielectric constants, one corresponding to the bulk
solvent, and the other to the solvent close to the cylindrical
surface.

For an infinite charged cylinder, which is surrounded by
counterions of one type, the PB equation is

¹2f̃~r !5
1

r

]

]r S r ]f̃~r !

]r D 5H 2
4p

ẽ
r̃~r ! for a0<r<a

2
4p

e
r̃~r ! for a,r<R,

~4.1a!

wherer is the radial distance to the axis; the two dielectric
constants areẽ for the solvent close to the cylindrical sur-
face, within a0<r<a, and e for the bulk solvent, in
a,r<R. A picture of the cylinder model is displayed in Fig.
4. The charge densityr̃(r ) is determined by the statistical
Boltzmann factor,

r̃ ~r !5qn0e
2qf̃~r !/kBT, ~4.1b!

whereq is the charge of the counterions,qf̃(r ) is the aver-
age potential energy of a counterion in the solution or the
potential of mean force~PMF! of the counterion at a distance
r from the cylinder~polyion!, qn0 is the charge density at a
distance wheref̃(r )50, andT is the absolute temperature.

In a first approximation, because of the negative sign in
the exponent of the exponential function, the occurrence of
ions with the same sign of charge as the cylinder~co-ions! is
neglected; therefore we assume that the only ions in solution
are the counterions. In addition, the counterion potential en-
ergies are relevant to the extent they are comparable to
kBT; at room temperature (25 ° C!, kBT'0.026 eV.

The general solution of Eqs.~4.1a! and ~4.1b! is
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f̃~r !55
kBT

q
lnF k2r 2

2~ ẽ/e!b̄0
2sinh

2@b̄0ln~A0r !#G for a0<r<a

kBT

q
lnFk2r 2

2b̄2 sinh
2@b̄ ln~Ar !#G for a,r<R,

~4.2!

wherek254pq2n0 /ekBT. The parameter 1/k is related to
the thickness of the counterion diffuse cloud.

The four constantsb̄, b̄0 , A, and A0 in Eq. ~4.2! are
determined by requiring the continuity atr5a of the poten-
tial f̃(r ) and the associated electric field, and two additional
conditions:~i! the space integral of the charge of the coun-
terions in solution is equal in magnitude and opposite in sign
to the surface charge on the cylinder;~ii ! the electric field
vanishes at a radiusR within which the counterions are con-
fined.

Condition ~i! assures the electrical neutrality of the solu-
tion and condition~ii ! is used for convenience. From condi-
tion ~i!, we get

l52E
a0

R

r̃~r 8!2pr 8dr8,

wherel is the linear charge density of the cylinder anda0 is
the radius of the cylinder or the distance of closes approach
of a counterion to the cylinder axis. Using Eq.~4.1a! in the
last equation, we get

l5
ẽ

2 S r 8 ]f̃~r 8!

]r 8
D
r 85a

2
ẽ

2 S r 8 ]f̃~r 8!

]r 8
D
r 85a0

1
e

2 S r 8 ]f̃~r 8!

]r 8
D
r 85R

2
e

2 S r 8 ]f̃~r 8!

]r 8
D
r 85a

,

or

l52
ẽa0
2 S ]f̃~r 8!

]r 8
D
r 85a0

. ~4.3!

Using condition~ii ! and the continuity of the electric field at
r5a:

ẽ F r 8 ]f̃~r 8!

]r 8
G
r 85a2d

5eF r 8 ]f̃~r 8!

]r 8
G
r 85a1d

~ limd→0!,

~4.4a!

or, using Eq.~4.2!,

ẽ $11b̄0coth@b̄0ln~A0a!#%5e$11b̄ coth@b̄ ln~Aa!#%.
~4.4b!

The continuity of the potential is

@f̃~r 8!# r 85a2d5@f̃~r 8!# r 85a1d ~ limd→0!. ~4.5!

We introduce the following parameter, which turns out to
be important in Manning’s theory:

j52
ql

ekBT
. ~4.6!

j is a positive number becauseq andl have opposite signs.
The linear charge densityl is determined by Eq.~3.6! of the
previous section.

From Eqs.~4.2!, ~4.3!, and~4.6!, we find that

j5~ ẽ/e!$11b̄0 coth@b̄0 ln~A0a0!#%, ~4.7!

which can be written as

j5~ ẽ/e!F11
@~e/ ẽ !j f21#b̄0coth@b̄0ln~a0 /a!#1b̄0

2

@~e/ ẽ !j f21#1b̄0coth@b̄0ln~a0 /a!#
G ,

~4.8a!

where

b̄0
2511~e/ ẽ !$@~e/ ẽ !21#j f

22~12b̄2!% ~4.8b!

and

j f5
12b̄2

11b̄ coth@b̄ ln~R/a!#
. ~4.8c!

From known values of the parametersj, e, ẽ, a0 , a, and
R, the last three equations can be solved forb̄,b̄0 , andj f .
The parameterj f is proportional to the effective linear
charge density at the radiusr5a, after the counterions near
the cylinder have partially neutralized the charged surface. In

FIG. 4. Uniformly charged cylinder of infinite length in solu-
tion. Solid lines represent the impenetrable cylinder of radiusa0 ,
wherea05a081s. In this equation,a08 is the radial distance of the
charges to the axis of the double helix ands is the minimum
distance of approach of a counterion to a helix charge. The solution
is on the outside of the cylinder. The dielectric constant for the
solvent isẽ at close distances,a0<r<a, ande at large distances,
a,r<R. The length parameterR, used in solving the Poisson-
Boltzmann equation, is not shown.
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expressingb̄0
2 in Eq. ~4.8b!, we have used Eqs.~4.2!, ~4.4b!,

and ~4.5!. The expression forj f in Eq. ~4.8c! resulted from
combining

j f5$11b̄ coth@b̄ ln~Aa!#% ~4.9a!

and

0511b̄ coth@b̄ ln~AR!#, ~4.9b!

which results from condition~ii !, given above. To obtain
values forj with physical meaning, it can be seen, using
Eqs.~4.8a!–~4.8c!, that the values ofb̄ which give a value of
j within the range 0,j,` are either real, 1>b̄>0, or
purely imaginary, 0,b̄, i b̄` , where b̄` is a certain real
value. ~The parametersj and j f are real quantities because
they are proportional to a linear charge density; thereforeb̄
andb̄0 must be either real or purely imaginary constants.! To
accurately solve Eqs.~4.8a!–~4.8c!, values ofb̄ within the
mentioned range are substituted, until the desired value of
j is obtained.@For our purposes, the values ofb̄ andb̄0 are
designated as positive, and either real or imaginary, because
the formulas are invariant after a change in sign. In using
imaginary values, coth(is)52 i cot(s) wheres is the argu-
ment.#

To analyze the counterion distribution, we calculate the
following functions:

p̃~r !dr5
r̃~r !2pr

E
a0

R

r̃~r 8!2pr 8dr8

dr, ~4.10a!

p̃~r !dr55 F ~ ẽ/e!~b̄0
2/j!

r sinh2@b̄0ln~A0r !#
Gdr for a0<r<a

F b̄2/j

r sinh2@b̄ ln~Ar !#
Gdr for a,r<R,

~4.10b!

and

Q̃~r !5E
a0

r

p̃~r 8!dr85

E
a0

r

r̃~r 8!2pr 8dr8

E
a0

R

r̃~r 8!2pr 8dr8

, ~4.11a!

Q̃~r !5H 12
~ ẽ/e!

j
$11b̄0coth@b̄0 ln~A0r !#% for a0<r<a

12
1

j
$11b̄ coth@b̄ ln~Ar !#% for a,r<R.

~4.11b!

In the last formulas,A and A0 are determined by solving
Eqs.~4.7! and~4.9a!. Equations~4.10a! and~4.10b! give the
probability that a counterion is found between the distances
r and r1dr from the axis. Equations~4.11a! and ~4.11b!
represent the probability of having a counterion within a dis-
tancer , or the fraction of the total charge in solution that lies
between the radiusa0 and r . Whenj is large, most of the

counterions remain close to the surface. In Eq.~4.11b!, the
quantity in the right-hand side enclosed in braces for
a,r<R decreases whenr increases. This quantity decreases
sharply whenr is still close toa and slowly whenr increases
more towardsr5R, where it vanishes. The large concentra-
tion of counterions near the cylinder surface is consistent
with Manning’s theory of counterion condensation because
the quantity in braces in Eq.~4.11b! is close to 1 at a some-
what arbitrary radius which is close to the surface. In Man-
ning’s theory, the fraction of condensed counterions ap-
proaches the limit 121/j @25,26#.

The charge densityr̃(r ) in Eq. ~4.1b! is not determined
completely unless the constantn0 is known. In our calcula-
tion, the concentrationn0 , which is fixed, is defined in terms
of the volume of solution per counterion. With this definition
we have a lower limit for the bulk concentration. The expres-
sion forn0 is

n05
1

~dpp/2!p~R22a0
2!
, ~4.12!

wheredpp is the distance between two consecutive charges
on the same chain of the helix, as described in Sec. III.

Because of Eq.~4.1b!, the presence of the charged cylin-
der causes the charge density of counterions,r̃(r ), to be
sharply peaked at the cylinder surface, as shown in Fig. 5.
The local counterion charge density at the surface varies
quite rapidly. The high concentration of counterions is also
apparent in an inset of Fig. 5, where Eq.~4.11b! is plotted.
This equation gives the fraction of counterions around the
cylinder within a radiusr .

FIG. 5. The counterion density given in Eq.~4.1b! is shown. In
the upper inset is the potential energy of a unit charge counterion,
q5ueu, near the charged cylinder, from Eq.~4.2!. In the lower inset
is the fraction of the total counterion charge that is within a radius
r , plotted from Eq.~4.11b!. At r5R, Q̃(r ) is unity ~not shown!.
Near the cylinder radius a large fraction of charge is accumulated.
The values of the parameters, defined within the text, are
j54.43 @h(cY)53.21 Å, b̄5 i0.6844], e578.85, ẽ520, a0514
Å, a515 Å, R5403.5 Å,n050.001M , andT5298.15 K.
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The charges on the polyion are restricted to the surface of
the cylinder; therefore, we determine the local concentration
using r̃(a0) at the surface, namely,

n5
r̃~a0!

q
, ~4.13!

whereq is the charge of a counterion; Eqs.~4.1b!, ~4.12!,
and ~4.2! are used. The local ionic concentration, shown in
Eq. ~4.13!, is substituted in the PMF, given in Eqs.~2.4a!–
~2.4d!. The inverse DH screening length associated with the
counterions near the double helix is

k5S 4pnq8

ẽkBT
D 1/2, ~4.14!

which is used instead of Eq.~2.4d!, andn is given by Eq.
~4.13!. @A charge on the double helix denoted byq8 replaces
q1 in Eq. ~2.4c!.# The interactions between charges on the
helix are calculated by the PMF, which is illustrated in Fig.
6. This calculation is required in order to obtain the differ-
ence in the free energy between the two conformations,
DW(Y,X), given in Eqs.~3.5a!–~3.5d!.

If n andn0 are given in number of counterions per Å3,
the molar concentrations (M ) are

c05
n0

6.02231024 , ~4.15a!

c5
n

6.02231024 , ~4.15b!

wheren0 andn are given by Eqs.~4.12! and~4.13!, respec-
tively.

V. RESULTS ON THE FREE ENERGY OF COILING

In this section, we discuss the results of the calculations
on the change in the free energy between the coiled and
uncoiled conformations,DW(Y,X). The parameters for two
double helix models are shown in Table II. TheA model and
theB model, which we use for the calculations, are based on
the experimental values of Table I and they correspond to
A-DNA and B-DNA, respectively. The only difference be-
tween these models is the value ofdpp , the distance between
two consecutive charges on the same chain. For the calcula-
tions, the change in the value ofdpp is what seems to be
essential. The results of the calculations are shown in Figs.
6–13 and Tables III–VI. The values of the parameters shown
in these tables are both experimental and calculated; the cal-
culated ones are noted with an asterisk. In Figs. 7–13,
DW(Y,X), which is calculated from Eqs.~3.5a!–~3.5d! of
Sec. III, is shown as a function of the coiling anglecY of
conformationY; the corresponding values of the molar local
concentration of counterions, calculated from Eq.~4.15b!,
are also shown. The calculations are based on the pair poten-
tial of mean force given in Eqs.~2.4a!–~2.4c! of Sec. II and
Eq. ~4.14! of Sec. IV; we assumed that a charge on the helix
and a counterion is a unit charge; the PMF is illustrated in
Fig. 6. In Eqs.~2.4c! and ~4.14!, the dielectric constant that
enters in the PMF,ẽ is equal to the dielectric constant for the
solvent near the cylinder which is used in Sec. IV; this is so
because the charges on the helix are immersed in this sol-
vent. Tables III–VI are divided into sections, which are la-
beled with a letter, and within each table section we give
various examples, which are labeled with a number~in the
first column!. Each of the seven table sections is shown in
each of Figs. 7–13. In Tables III–VI, the experimental pa-
rameters that are fixed for the examples of the table section
are shown in the heading. In the first six columns, the calcu-
lated parameters which minimize the value of the change in
the free energy,DW(Y,X), are noted with an asterisk. In the
last two columns of Tables IV–VI, we give two experimen-
tal parameters that change in each example. In the following
paragraphs, we explain the results for each table section.

~a! We use the parameters of theB model, which is given
in Table II, appropriate for aqueous solutions. As seen in Fig.
7, decreasing the dielectric constant for the solvent near the
double helix, ẽ, causes the change in the free energy,
DW(Y,X), to decrease and the position of the minimum to
approach zero at a certain critical value ofẽ. The value of 20
for ẽ is chosen in the following water solution examples

TABLE II. The parameters of the double helix model which are
based onA-DNA andB-DNA experimental parameters of Table I.
It is seen that the two models only differ in the value of the distance
between consecutive charges on the same chain,dpp .

Type a08 ~Å! d̄ pp ~Å! c̄0 ~deg! h̄0
a ~Å! dpp ~Å!

A model 9 18.2 170 3.12 5.6
B model 9 18.2 170 3.12 6.5

aCalculated from Eq.~3.2! in text.

FIG. 6. The PMF at several counterion concentrations during
coiling from Eqs. ~2.4a!–~2.4c! and ~4.14!. The parameters are
given in Table III, section~a!, item 1, whereẽ515. Symbols are
explained in text. A unit charge is assumed for each of the charges
on the helix and the counterions, i.e.,q852ueu and q5ueu. The
curves correspond to various coiled conformations:cY50°,
c50.84M , j52.19, dotted line;cY536.0°, c57.57M , j54.23,
solid line;cY536.5°, c58.47M , j54.39, dashed line.c is calcu-
lated from Eq.~4.15b!.
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FIG. 7. The dielectric constant for the solvent near to the helix,
ẽ , is varied. The change in the free energy,DW(Y,X), between
two conformationsY ~coiled! andX ~uncoiled! is shown, calculated
from Eq. ~3.5a!, as a function of the anglecY of Y. Inset: local
counterion concentrationc from Eq. ~4.15b!. The double helix pa-
rameters are from theB model of Table II. Each charge on the helix
is a unit charge. The parameters of these examples are given in
section~a! of Table III. The following numbers refer to the first
column of Table III: 1~solid line!, 2 ~dot-dashed line!, 3 ~dashed
line!, and 4 ~dotted line!. The value if ẽ decreases in the order
1-2-3-4.

FIG. 8. The minimum distance of approach of a counterion to a
charge on the helix,s is varied. The change in the free energy,
DW(Y,X), between two conformationsY ~coiled! andX ~uncoiled!
is shown, calculated from Eq.~3.5a!, as a function of the angle
cY of Y. Inset: local counterion concentrationc from Eq. ~4.15b!.
The double helix parameters are obtained from theB model of
Table II. Each charge on the helix is a unit charge. The parameters
of these examples are given in section~b! of Table III. The follow-
ing numbers refer to the first column of Table III: 1~solid line!, 2
~dot-dashed line!, and 3~dashed line!. The value ofs decreases in
the order 1-2-3.

FIG. 9. The bulk concentrationc is varied, usings55.85 Å.
The change in the free energy,DW(Y,X), between two conforma-
tions Y ~coiled! and X ~uncoiled! is shown, calculated from Eq.
~3.5a!, as a function of the anglecY of Y. Inset: local counterion
concentrationc from Eq. ~4.15b!. The double helix parameters are
obtained from theB model of Table II. Each charge on the helix is
a unit charge. The parameters of these examples are given in section
~c! of Table IV. The following numbers refer to the first column of
Table IV: 1 ~dotted line!, 2 ~dashed line!, 3 ~dot-dashed line!, 4
~solid line!, and 5~upper dotted line!. The value ofc increases in
the order 1-2-3-4-5.

FIG. 10. The bulk concentrationc is varied, usings55.65 Å.
The change in the free energy,DW(Y,X), between two conforma-
tions Y ~coiled! and X ~uncoiled! is shown, calculated from Eq.
~3.5a!, as a function of the anglecY of Y. Inset: local counterion
concentrationc from Eq. ~4.15b!. The double helix parameters are
obtained from theB model of Table II. Each charge on the helix is
a unit charge. The parameters of these examples are given in section
~d! of Table IV. The following numbers refer to the first column of
Table IV: 1 ~dotted line!, 2 ~dashed line!, 3 ~dot-dashed line!, 4
~solid line!, and 5~upper dotted line!. The value ofc increases in
the order 1-2-3-4-5.

700 54CARLOS E. GALINDO AND J. B. SOKOLOFF



because this value is consistent with measurements in con-
centrated ionic solutions@32,33# and it yields reasonable val-
ues for the other parameters. The parameterc* is calculated
from Eq.~4.15b!. Figure 6 illustrates the PMF, given in Eqs.
~2.4a!–~2.4c! and ~4.14!, that was used in the calculation.
The PMF is not a monotonic function ofr and this feature
might produce kinks inDW(Y,X), as seen in Figs. 11 and
12.

~b! This shows a change in the radius of the counterion,
which changes the counterion minimum distance of approach
~hard core! to the center of a charge on the double helix. As
seen in Fig. 8, after decreasing the radius of the counterion
the change in the free energy is smaller. The calculations
suggest that theB-DNA might be unstable for small radii of
the counterion. However, counterion hydrated radii are not
too small, about 5 Å@32,33#, if we include both the diameter
of a water molecule and the ionic radius of the counterion.
Because of the high concentration of counterions near the
double helix, the Coulomb interaction is screened and the
nonmonotonic hard-core correlation effects become impor-
tant, as shown in Fig. 6. Even though the sum of Eq.~3.5a!
can be performed easily to include the first 200 charges, the
nearest charges in the same chain contribute significantly to
the change in the free energy. These results are consistent
with the experimental finding that with counterions of large
hydrated radii~small ionic radii!, DNA is more stable. For
DNA in aqueoussolution, the temperature of melting is
higher in Li1 compared to Na1 @40#, and in Na1 compared
to K1 @41#. The hydrated radius of the counterion decreases
in the order Li1.Na1.K 1.

~c! and~d! These illustrate the change in the bulk concen-
tration c0 from Eq. ~4.15a! with a corresponding change in
the dielectric constant for the solution,e. The value of these
parameters are obtained from Refs.@32# and@33#, where the
hydrated radii of three counterions in aqueous solution and
the static dielectric constant were measured.~The radii de-
crease in the order Li1.Rb1.Cs1.) Table sections~c!
and~d! correspond to Li1 and Cs1, respectively. The mea-
sured hydrated radii for Li1, Cs1, and Cl2 are 2.6, 2.4, and
3.25 Å, respectively. The hard cores is obtained by adding
the radii of a positive and a negative ion, resulting in 5.85
and 5.65 Å.~We use the hydrated radius of Cl1 for the
hydrated radius of the phosphate groups on the double helix.!
As seen in Figs. 9 and 10, for~c! and ~d!, respectively, the
double helix is less coiled@the value ofcY at the minimum
of DW(Y,X), cY* , is reduced# when the bulk concentration
is increased, which also causes a reduction ofDW(Y,X) at
the minimum. The calculations suggest that there is an un-
coiling transition at sufficiently high concentrations. This un-
coiling transition is different from the uncoiling transition
that is observed experimentally in DNA for sufficient dilu-
tion. In our model, the local counterion concentration is cal-
culated by solving the PB equation for an infinite cylinder.
Consequently, the counterion concentration near the cylinder
does not decrease substantially, even at extremely low bulk
concentrations, and hence the double helix remains coiled.
We have performed calculations, to be published, on the
ionic concentration near a polyion of finite length. These
calculations show that if the DH screening length associated
with the bulk ionic concentration is comparable to or larger
than the length of the polyion~or some other characteristic

length scale, such as the radius of curvature!, the ionic con-
centration at close distances decreases. A decrease of the
local counterion concentration causes the helix to uncoil.

~e! and~f! These show a change of the dielectric constant

FIG. 11. The bulk dielectric constante is varied, using
s53.79 Å. The change in the free energy,DW(Y,X), between two
conformationsY ~coiled! and X ~uncoiled! is shown, calculated
from Eq. ~3.5a!, as a function of the anglecY of Y. Inset: local
counterion concentrationc from Eq. ~4.15b!. The double helix pa-
rameters are obtained from theA model of Table II. Each charge on
the helix is a unit charge. The parameters of these examples are
given in section~e! of Table V. The following numbers refer to the
first column of Table V: 1~solid line!, 2 ~dotted line!, and 3~dot-
dashed line!. The value ofe decreases in the order 1-2-3.

FIG. 12. The bulk dielectric constante is varied, using
s53.45 Å. The change in the free energy,DW(Y,X), between two
conformationsY ~coiled! and X ~uncoiled! is shown, calculated
from Eq. ~3.5a!, as a function of the anglecY of Y. Inset: local
counterion concentrationc from Eq. ~4.15b!. The double helix pa-
rameters are obtained from theA model of Table II. Each charge on
the helix is a unit charge. The parameters of these examples are
given in section~f! of Table V. The following numbers refer to the
first column of Table V: 1~solid line!, 2 ~dotted line!, and 3~dot-
dashed line!. The value ofe decreases in the order 1-2-3.
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for the bulk solvente. The bulk counterion concentration is
low in these examples; thus we use the dielectric constant for
the pure solvent. A decrease in the dielectric constant for the
solvent is achieved by mixing an alcohol, such as methanolor
ethanol, with the water@42#. At T525 °C, the values of the

dielectric constants for the pure solvents are@43#
ew578.85, em532.63, andee524.3, for water, methanol,
and ethanol, respectively. The examples in Table V are cal-
culated using the static dielectric constant of a mixture of
water and ethanol, which is obtained from measurements
@42#. In addition, it is found from experiments of DNA in
solutions with a high content of ethanol that DNA is in the
A conformation@44#, i.e.,A-DNA. Therefore the parameters
of the A model in Table II are used in these examples. As
seen from the calculations in Fig. 8 and table section~b!, the
B model becomes unstable for small counterion radii. In ex-
periments, the high content of ethanol might prevent the hy-
dration of the counterion. In a solution with small counteri-
ons, theA model is a more stable conformation; this is
because consecutive phosphate groups on the same chain are
closer. In our calculations, we have chosen Cs1 and K1 as
the two counterions. The ionic radii can be obtained@43# and
are found to be 2.12, 1.67, and 1.33 Å, for P~for a phosphate
group!, Cs, and K, respectively. The hard cores is obtained
by adding phosphate and counterion ionic radii. In these cal-
culations, we have assumed there is no hydration; therefore
there is only one value of the dielectric constant for the sol-
vent. The values of 37.18 and 27.99 correspond to mixtures
of ethanol and water where the mole fraction of water is 0.5
and 0.2, respectively@42#. As seen in Figs. 11 and 12, on
decreasing the dielectric constant and the counterion radii,
DW(Y,X) at the minimum increases. The curves in these
figures have kinks, showing less coiling or more coiling,
depending on the values of the parameters. Considering that
the double helix uncoils before denaturation takes place, our
results are consistent with measurements of DNA in ethanol
and methanol solutions. It is well known that methanol and
ethanol, or mixtures of these solvents and water, denature
DNA @45,46#, and that the denaturation temperature is lower

TABLE III. The dependence of the free energy change on the dielectric constant for the solvent near the
double helix and on the counterion hard-core radius. The change in the free energyDW(Y,X) is calculated
from Eqs.~3.5a!–~3.5d!. The coiled conformation isY and the uncoiled conformation isX. The coiling angle
is cY . In each section there are experimental and calculated parameters. The calculated parameters are
denoted with an asterisk. In each section, several examples are shown. The experimental parameters in the
section heading remain fixed for the examples within the section.

DW* ~eV! cY* ~deg! h* ~Å! c* (M ) j* b̄* ē s ~Å! a0 ~Å!

~a!
T5298.15 K e578.85c050.001M (R5403.6 Å!a

s56 Å a0515 Å a516 Å

1 20.121 36.0 3.36 7.57 4.23 i0.6887 15
2 20.077 29.6 4.59 7.21 3.10 i0.6493 8
3 20.020 17.4 5.90 6.91 2.41 i0.6005 5
4 ;0 0.3 6.50 7.40 2.19 i0.5708 4
5 ;0 ;0 6.50 9.34 2.19 i0.5554 3.5

~b!

T5298.15 K e578.85c050.001M (R5403.6 Å!a

ẽ 520 a516 Å

1 20.119 37.5 2.96 7.60 4.80 i0.7005 6 15
2 20.033 35.1 3.58 7.32 3.98 i0.6584 5 14
3 20.011 32.8 4.05 7.15 3.51 i0.6139 4 13

aR is used in Eq.~4.12! in text.

FIG. 13. The temperature is varied. The change in the free en-
ergy,DW(Y,X), between two conformationsY ~coiled! andX ~un-
coiled! is shown, calculated from Eq.~3.5a!, as a function of the
anglecY of Y. Inset: local counterion concentrationc from Eq.
~4.15b!. The double helix parameters are obtained from theB
model of Table II. Each charge on the helix is a unit charge. The
parameters of these examples are given in section~g! of Table VI.
The following numbers refer to the first column of Table VI: 1
~solid line! and 2~dotted line!. The temperatureT increases in the
order 1-2.
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compared to an aqueous solution of the same ionic concen-
tration. Experimentally, it is found that DNA in methanol
solutions is more stable when the ionic radius of the coun-
terion is larger@45,44#, as opposed to what happens in pure

water. The melting temperature decreases in Na1 as com-
pared to Cs1 @45#, which is understood because Cs1 has the
larger ionic radius. As noted in other studies@9,12#, the sta-
bility of the double stranded DNA secondary structure is not

TABLE IV. As Table III, showing the dependence of the free energy change on the bulk concentration of
the solution.

DW* ~eV! cY* ~deg! h* ~Å! c* (M ) j* b̄* c0(M ) e

~c!
T5298.15 K ẽ520

s55.85 Å a0514.85 Å a516 Å

1 20.106 37.3 3.02 7.79 4.71 i0.4561 1025 78.85
~4032.8! a

2 20.087 36.8 3.16 7.85 4.50 i1.5311 0.1 78.85
~43.0!

3 20.036 32.4 4.13 6.93 4.23 i3.4609 1.09 64.2
~19.2!

4 20.018 26.7 5.00 7.27 4.62 i5.4189 2.65 48.6
~16.8!

5 20.002 16.0 6.00 6.83 4.57 i6.6178 3.88 40.95
~16.2!

~d!

T5298.15 K ẽ520
s55.65 Å a0514.65 Å a516 Å

1 20.082 36.7 3.18 7.49 4.47 i0.4523 1025 78.85
~4032.8! a

2 20.064 35.9 3.39 7.27 4.20 i1.4824 0.1 78.85
~42.9!

3 20.025 31.5 4.29 6.82 3.85 i3.2375 1.1 68.0
~19.0!

4 20.012 26.9 4.97 7.30 3.92 i4.7170 2.5 57.6
~16.7!

5 20.003 16.2 5.72 6.98 3.77 i5.5459 3.5 52.1
~16.2!

aR in Å, which is used in Eq.~4.12! in text.

TABLE V. As Table III, showing the dependence of the free energy change on the dielectric constant for
the bulk solvent.

DW* ~eV! cY* ~deg! h* ~Å! c* (M ) j* b̄* e ẽ

~e!
T5296.15 K c050.001M (R5434.7 Å!a

s53.79 Å a0512.79 Å

1 20.018 32.3 2.51 13.17 12.10 i0.6999 37.18 37.18
2 20.012 29.7 3.18 11.01 12.70 i0.7007 27.99 27.99
3 20.002 21.4 4.49 10.67 16.75 i0.7043 15.0 15.0

~f!
T5296.15 K c050.001M (R5434.7 Å!a

s53.45 Å a0512.45 Å

1 20.014 31.4 2.76 11.26 10.99 i0.6940 37.18 37.18
2 20.009 29.6 3.20 11.45 12.62 i0.6962 27.99 27.99
3 20.001 20.0 4.65 10.48 16.19 i0.6995 15.0 15.0

aR is used in Eq.~4.12! in text.
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only due to the interstrand hydrogen bonds. The authors of
these references have also mentioned that denaturing agents,
such as methanol and ethanol, do not specifically break the
hydrogen bonds; however, they cause instability of the DNA
helix. The hydrogen bonding is important in keeping the two
DNA strands together@11#, shown in experiments in which
the composition of G-C pairs is varied; however, this might
not be relevant for the coiling.

~g! This shows a change in the temperature with a corre-
sponding change in the dielectric constant for the bulk sol-
vent, according to experimental measurements@43#. In these
examples we consider theB model in aqueous solution. The
product eT decreases only slightly. This small decrease
causes almost no effect on the parameters that minimize the
change in the free energy, as seen in Fig. 13. The equilibrium
value ofcY moves slightly toward higher values, implying
coiling of the helix and increase in the change in the free
energy, i.e., it has a higher negative value. In these examples,
we have not considered a change in the value of the dielec-
tric constant near the double helix due to an increase of the
temperature. However, this temperature dependence might
be an important feature to investigate. In our model, for a
very high temperature~thousands of degrees!, where the di-
electric constant of water is close to 1, the helix uncoils
because the counterion concentration near the helix de-
creases enough. This temperature of uncoiling is not consis-

tent with the thermal denaturation of DNA that occurs below
T5100 °C. However, a decrease of the dielectric constant
for the solvent close to the helix can produce an uncoiling
transition at temperatures close to the experimental value, as
seen above in part~a! of this discussion and the examples
shown in Fig. 7 and Table III.

As a final point, we discuss briefly the calorimeter mea-
surements of the enthalpy associated with DNA denatur-
ation. At a temperature ofT525 °C, kBT;0.026 eV. The
stability of the helix depends on comparing the minimum
value of the free energy of coiling withkBT. Once the hy-
drogen bonding contribution to the energy has been sub-
tracted, the experimental energy attributed to the stacking
enthalpy is 3.6 kcal per mole of phosphate group pairs@47#.
The energy attributed only to the stacking could also include
the coiling energy. To compare the experimental measure-
ment to our calculations, an energy of 1.8 kcal per mole of
phosphate group~one half of the above value for one charge
on the helix! is approximately 0.078 eV. The coiling energy
calculated in the examples is seen to be consistent with this
value.
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